Impact of the quality of hydrological forecasts on the management and revenue of hydroelectric reservoirs – a conceptual approach
-
Published:2021-02-25
Issue:2
Volume:25
Page:1033-1052
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Cassagnole ManonORCID, Ramos Maria-HelenaORCID, Zalachori Ioanna, Thirel GuillaumeORCID, Garçon Rémy, Gailhard Joël, Ouillon Thomas
Abstract
Abstract. The improvement of a forecasting system and the continuous evaluation of its quality are recurrent steps in operational practice. However, the systematic evaluation of forecast value or usefulness for better decision-making is less frequent, even if it is also essential to guide strategic planning and investments. In the hydropower sector, several operational systems use medium-range hydrometeorological forecasts (up to 7–10 d ahead) and energy price predictions as input to models that optimize hydropower production. The operation of hydropower systems, including the management of water stored in reservoirs, is thus partially impacted by weather and hydrological conditions. Forecast value can be quantified by the economic gains obtained with the optimization of operations informed by the forecasts. In order to assess how much improving the quality of hydrometeorological forecasts will improve their economic value, it is essential to understand how the system and its optimization model are sensitive to sequences of input forecasts of different quality. This paper investigates the impact of 7 d streamflow forecasts of different quality on the management of hydroelectric reservoirs and the economic gains generated from a linear programming optimization model. The study is based on a conceptual approach. Flows from 10 catchments in France are synthetically generated over a 4-year period to obtain forecasts of different quality in terms of accuracy and reliability. These forecasts define the inflows to 10 hydroelectric reservoirs, which are conceptually parameterized. Relationships between forecast quality and economic value (hydropower revenue) show that forecasts with a recurrent positive bias (overestimation) and low accuracy generate the highest economic losses when compared to the reference management system where forecasts are equal to observed inflows. The smallest losses are observed for forecast systems with underdispersion reliability bias, while forecast systems with negative bias (underestimation) show intermediate losses. Overall, the losses (which amount to millions of Euros) represent approximately 1 % to 3 % of the revenue over the study period. Besides revenue, the quality of the forecasts also impacts spillage, stock evolution, production hours and production rates, with systematic over- and underestimations being able to generate some extreme reservoir management situations.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference63 articles.
1. Ahmad, A., El-Shafie, A., Razali, S. F. M., and Mohamad, Z. S.: Reservoir
Optimization in Water Resources: a Review, Water Resour. Manage., 28, 3391–3405, https://doi.org/10.1007/s11269-014-0700-5, 2014. a 2. Ahmed, J. A. and Sarma, A. K.: Genetic Algorithm for Optimal Operating Policy
of a Multipurpose Reservoir, Water Resour. Manage., 19, 145–161,
https://doi.org/10.1007/s11269-005-2704-7, 2005. a 3. Alemu, E. T., Palmer, R. N., Polebitski, A., and Meaker, B.: Decision Support
System for Optimizing Reservoir Operations Using Ensemble Streamflow
Predictions, J. Water Resour. Plan. Manage., 137, 72–82,
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000088, 2011. a 4. Anghileri, D., Voisin, N., Castelletti, A., Pianosi, F., Nijssen, B., and
Lettenmaier, D.: Value of long-term streamflow forecasts to reservoir
operations for water supply in snow-dominated river catchments, Water Resour. Res., 52, 4209–4225, https://doi.org/10.1002/2015WR017864, 2016. a 5. Arsenault, R. and Côté, P.: Analysis of the effects of biases in ensemble streamflow prediction (ESP) forecasts on electricity production in hydropower reservoir management, Hydrol. Earth Syst. Sci., 23, 2735–2750,
https://doi.org/10.5194/hess-23-2735-2019, 2019. a, b, c, d
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|