Affiliation:
1. 1 Cornell University Ithaca Department of Mathematics Malott Hall, Room 433 NY 14853 USA
2. 2 Eötvös University Institute of Mathematics Pázmány Péter sétány 1/C H-1117 Budapest Hungary
Abstract
A bicycle (
n
,
k
)-gon is an equilateral
n
-gon whose
k
-diagonals are equal. S. Tabach-nikov proved that a regular
n
-gon is first-order flexible as a bicycle (
n
,
k
)-gon if and only if there is an integer 2 ≦
r
≦
n
-2 such that tan (π/
n
) tan (
kr
π/
n
) = tan (
k
π/
n
) tan (
r
π/
n
). In the present paper, we solve this trigonometric diophantine equation. In particular, we describe the family of first order flexible regular bicycle polygons.
Reference8 articles.
1. Sur un problème de M. Ulam concernant l’équilibre des corps flot-tants;Auerbach H.;Studia Math.,1938
2. Higher-Order Rigidity-What is the Proper Definition?;Connelly R.;Discrete Comput. Geom.,1994
3. Trigonometric diophantine equations (On vanishing sums of roots of unity);Conway J. H.;Acta Arith.,1976
4. Csikós, B. , On the rigidity of regular bicycle ( n ; k )-gons, Contributions to Discrete Mathematics , 2 (2007), no. 1, 93-106. MR 2007m :37144
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Self-Bäcklund curves in centroaffine geometry and Lamé’s equation;Communications of the American Mathematical Society;2022-08-24
2. Cross-ratio Dynamics on Ideal Polygons;International Mathematics Research Notices;2020-12-15
3. Tire Tracks and Integrable Curve Evolution;International Mathematics Research Notices;2018-05-17
4. Polygonal bicycle paths and the Darboux transformation;Involve, a Journal of Mathematics;2016-01-01
5. On curves and polygons with the equiangular chord property;Pacific Journal of Mathematics;2015-04-01