Cross-ratio Dynamics on Ideal Polygons

Author:

Arnold Maxim1,Fuchs Dmitry2,Izmestiev Ivan3,Tabachnikov Serge4

Affiliation:

1. Department of Mathematics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA

2. Department of Mathematics, University of California, Davis, CA 95616, USA

3. Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstrasse 8–10, 1040 Vienna, Austria

4. Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA

Abstract

Abstract Two ideal polygons, $(p_1,\ldots ,p_n)$ and $(q_1,\ldots ,q_n)$, in the hyperbolic plane or in hyperbolic space are said to be $\alpha $-related if the cross-ratio $[p_i,p_{i+1},q_i,q_{i+1}] = \alpha $ for all $i$ (the vertices lie on the projective line, real or complex, respectively). For example, if $\alpha = -1$, the respective sides of the two polygons are orthogonal. This relation extends to twisted ideal polygons, that is, polygons with monodromy, and it descends to the moduli space of Möbius-equivalent polygons. We prove that this relation, which is generically a 2-2 map, is completely integrable in the sense of Liouville. We describe integrals and invariant Poisson structures and show that these relations, with different values of the constants $\alpha $, commute, in an appropriate sense. We investigate the case of small-gons and describe the exceptional ideal pentagons and hexagons that possess infinitely many $\alpha $-related polygons.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference37 articles.

1. Classification of integrable equations on quad-graphs;Adler;The consistency approach. Comm. Math. Phys.,2003

2. On curves and polygons with the equiangular chord property;Aougab;Pacific J. Math.,2015

3. Iterating evolutes and involutes;Arnold;Discrete Comput. Geom.,2017

4. Mathematical Methods of Classical Mechanics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A family of integrable transformations of centroaffine polygons: geometrical aspects;Annales de l'Institut Fourier;2024-07-03

2. The Schwarzian Octahedron Recurrence (dSKP Equation) II: Geometric Systems;Discrete & Computational Geometry;2024-04-26

3. What is a Lattice W-Algebra?;International Mathematics Research Notices;2023-07-13

4. Finite Gauss Transformations;The Mathematical Intelligencer;2022-08-29

5. Self-Bäcklund curves in centroaffine geometry and Lamé’s equation;Communications of the American Mathematical Society;2022-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3