Tire Tracks and Integrable Curve Evolution

Author:

Bor Gil1,Levi Mark2,Perline Ron3,Tabachnikov Sergei2

Affiliation:

1. CIMAT, A.P. Guanjuato, Gto. Mexico

2. Department of Mathematics, Penn State, University Park, USA

3. Department of Mathematics, Drexel University, Philadelphia, USA

Abstract

Abstract We study a simple model of bicycle motion: a segment of fixed length in multi-dimensional Euclidean space, moving so that the velocity of the rear end is always aligned with the segment. If the front track is prescribed, the trajectory of the rear wheel is uniquely determined via a certain first order differential equation—the bicycle equation. The same model, in dimension two, describes another mechanical device, the hatchet planimeter. Here is a sampler of our results. We express the linearized flow of the bicycle equation in terms of the geometry of the rear track; in dimension three, for closed front and rear tracks, this is a version of the Berry phase formula. We show that in all dimensions a sufficiently long bicycle also serves as a planimeter: it measures, approximately, the area bivector defined by the closed front track. We prove that the bicycle equation also describes rolling, without slipping and twisting, of hyperbolic space along Euclidean space. We relate the bicycle problem with two completely integrable systems: the Ablowitz, Kaup, Newell, and Segur (AKNS) system and the vortex filament equation. We show that “bicycle correspondence” of space curves (front tracks sharing a common back track) is a special case of a Darboux transformation associated with the AKNS system. We show that the filament hierarchy, encoded as a single generating equation, describes a three-dimensional bike of imaginary length. We show that a series of examples of “ambiguous” closed bicycle curves (front tracks admitting self bicycle correspondence), found recently F. Wegner, are buckled rings, or solitons of the planar filament equation. As a case study, we give a detailed analysis of such curves, arising from bicycle correspondence with multiply traversed circles.

Funder

Consejo Nacional de Ciencia y Tecnología

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Periodic discrete Darboux transforms;Differential Geometry and its Applications;2023-12

2. Circular Dini Surfaces in $${\mathbb {E}}^4$$;Results in Mathematics;2023-11-22

3. On Circular Tractrices in R3;Zurnal matematiceskoj fiziki, analiza, geometrii;2023-09-25

4. Generalized plane offsets and rational parameterizations;Computer Aided Geometric Design;2023-06

5. Bicycling geodesics are Kirchhoff rods;Nonlinearity;2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3