Persistent long-term (c. 24 Ma) exhumation in the Eastern Alaska Range constrained by stacked thermochronology

Author:

Benowitz Jeff A.1,Layer Paul W.2,Vanlaningham Sam3

Affiliation:

1. Geophysical Institute, University of Alaska Fairbanks, PO Box 755940, Fairbanks, AK 99775, USA

2. College of Natural Science and Mathematics, University of Alaska Fairbanks, PO Box 755940, Fairbanks, AK 99775, USA

3. Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

Abstract

AbstractTo address Miocene–present episodic v. persistent exhumation, we utilize a simple graphical procedure that vertically stacks spatially diverse K-feldspar 40Ar/39Ar multi-domain diffusion (MDD) models from the length of the approximately 100 km-long high-peak region of the Eastern Alaska Range. We supply additional constraints with 40Ar/39Ar mica dating because the higher closure-temperature-window places limits on the initiation of rapid Eastern Alaska Range exhumation. We also provide a broad 40Ar/39Ar K-feldspar minimum closure age data set to add more detail on spatial patterns in the regional exhumation history for the Eastern Alaska Range. We find that rapid and persistent exhumation has occurred in the Eastern Alaska Range since about 24 Ma at a long-term rate of approximately 0.9 km/Ma, but that this rapid exhumation is spatially variable through time. Onset of rapid Eastern Alaska Range exhumation is coincident with the initiation of rapid exhumation in SW Alaska, the Western Alaska Range and the Chugach–Saint Elias Range at around 25 Ma, implying a region-wide deformational response to a change in tectonic forcing. The initiation of highly coupled flat-slab subduction of the Yakutat microplate is probably responsible for this prolonged period of rapid exhumation in southern Alaska.Supplementary material:Sample locations from the Eastern Alaska Range, and 40Ar/39Ar data tables and age spectrum figures are available at www.geolsoc.org.uk/SUP18603.

Publisher

Geological Society of London

Subject

Geology,Ocean Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3