Suture Reactivation, Slip Partitioning, and a Protracted Strike‐Slip Rate Gradient in the Denali Fault System, Southern Alaska, USA

Author:

Waldien T. S.1ORCID,Roeske S. M.2ORCID,Chatterjee R.3,O’Sullivan P. B.4ORCID,Stockli D. F.3ORCID

Affiliation:

1. Department of Geology and Geological Engineering South Dakota School of Mines and Technology Rapid City SD USA

2. Department of Earth and Planetary Sciences University of California, Davis Davis CA USA

3. Jackson School of Geosciences University of Texas Austin TX USA

4. GeoSep Services Moscow ID USA

Abstract

AbstractActive strike‐slip fault systems commonly display along‐strike Quaternary slip rate gradients associated with fault bends and splay faults, which generate surface uplift by dip‐slip faulting or distributed “off fault” deformation. By analogy, the documentation of long‐term (107 yr) slip gradients on some continental strike‐slip fault systems implies long‐term coevolution of strike‐slip and dip‐slip fault systems. Here we leverage the observed ≥33 Myr right‐lateral slip gradient on the Denali fault, Alaska, USA to investigate the role of splay thrust systems in accommodating the slip gradient. We focus on the Broxson Gulch thrust system, which splays southwestward from the Denali fault in the eastern Alaska Range. Apatite and zircon (U‐Th)/He and fission‐track cooling ages from metasedimentary and metaplutonic rocks intersected by the thrust system record an along‐strike decrease in cooling ages commensurate with an increase in late Oligocene‐Neogene bedrock exhumation and shortening with proximity to the Denali fault. The dominant structure in the Broxson Gulch thrust system is the Valdez Creek fault, which is an upper crustal reactivation of the Valdez Creek shear zone–the main Late Cretaceous suture between western North America and outboard accreted arc terranes. After reactivation of the Valdez Creek shear zone at ca. 30 Ma, the thrust system grew by south‐vergent imbrication of the upper crust along thrust and reverse faults until at least 6 Ma. Incorporating results from the Broxson Gulch thrust system into the regional structural evolution of the Denali fault system reveals significant spatiotemporal heterogeneity in shortening adjacent to the Denali fault. Moreover, nearly all of the late Oligocene‐Neogene shortening south of the Denali fault was focused along reactivated terrane boundaries inherited from Mesozoic assembly of the North American Cordillera, and the spatial distribution of the inherited structures appears to control slip partitioning behavior of the Denali fault system across time scales ranging from 101 (historic seismicity) to 107 yr. The slip partitioning behavior of the Denali fault system highlights the mechanical importance of inherited structures leading to protracted shortening on splay thrust systems, which siphon slip from the master strike‐slip fault. We contend that the weakness of nearby reactivated terrane boundaries should be considered among other mechanisms commonly evoked to explain the partitioning behavior of continental strike‐slip fault systems (e.g., stress field rotation, obliquity angle, and strength of master strike‐slip fault).

Publisher

American Geophysical Union (AGU)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3