Outboard Onset of Ross Orogen Magmatism and Subsequent Igneous and Metamorphic Cooling Linked to Slab Rollback during Late-Stage Gondwana Assembly

Author:

Paulsen Timothy1,Encarnación John2,Grunow Anne3,Benowitz Jeffrey4ORCID,Layer Paul4ORCID,Deering Chad5,Sliwinski Jakub6

Affiliation:

1. Department of Geology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA

2. Department of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63103, USA

3. Byrd Polar Research Center, The Ohio State University, Columbus, OH 43210, USA

4. Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

5. Department of Geological and Mining Engineering and Sciences, Michigan Technological University, Houghton, MI 49931, USA

6. Department of Earth Sciences, Institute of Geology, ETH Zurich, 8092 Zurich, Switzerland

Abstract

Changes in magmatism and sedimentation along the late Neoproterozoic-early Paleozoic Ross orogenic belt in Antarctica have been linked to the cessation of convergence along the Mozambique belt during the assembly of East-West Gondwana. However, these interpretations are non-unique and are based, in part, on limited thermochronological data sets spread out along large sectors of the East Antarctic margin. We report new 40Ar/39Ar hornblende, muscovite, and biotite age data for plutonic (n = 13) and metasedimentary (n = 3) samples from the Shackleton–Liv Glacier sector of the Queen Maud Mountains in Antarctica. Cumulative 40Ar/39Ar age data show polymodal age peaks (510 Ma, 491 Ma, 475 Ma) that lag peaks in U-Pb igneous crystallization ages, suggesting igneous and metamorphic cooling following magmatism within the region. The 40Ar/39Ar ages are similar to ages in other sectors of the Ross orogen, but younger than detrital mineral 40Ar/39Ar cooling ages indicative of older magmatism and cooling of unexposed inboard areas along the margin. Detrital zircon trace element abundances suggest that the widespread onset of magmatism in outboard localities of the orogen correlates with a ~560–530 Ma decrease in crustal thickness. The timing of crustal thinning recorded by zircon in magmas overlaps with other evidence for the timing of crustal extension, suggesting that the regional onset of magmatism with subsequent igneous and metamorphic cooling probably reflects slab rollback that coincided with possible global plate motion changes induced during the final assembly of Gondwana.

Funder

University of Wisconsin Oshkosh Faculty Development Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3