Development of Homoepitaxially Grown GaN Thin Film Layers on Freestanding Bulk m-plane Substrates by Metalorganic Chemical Vapor Deposition (MOCVD)

Author:

Jindal Vibhu,Grandusky James,Tripathi Neeraj,Tungare Mihir,Shahedipour-Sandvik Fatemeh,Sandvik Peter,Tilak Vinayak

Abstract

AbstractHigh quality homoepitaxial growth of m-plane GaN films on freestanding m-plane HVPE GaN substrates has been performed using metalorganic chemical vapor deposition. For this a large growth space was studied. Large areas of no-nucleation along with presence of high density of defects were observed when layers were grown under growth conditions for c-plane GaN. It is believed that these structural defects were in large part due to the low lateral growth rates as well as unequal lateral growth rates in a- and c- crystallographic directions. To achieve high quality, fully coalesced epitaxial layers, growth conditions were optimized with respect to growth temperature, V/III ratios and reactor pressure. Higher growth temperatures led to smoother surfaces due to increased surface diffusion of adatoms. Overall, growth at higher temperature and lower V/III ratio decreased the surface roughness and resulted in better optical properties as observed by photoluminescence. Although optimization resulted in highly smooth layers, some macroscopic defects were still observed on the epi-surface as a result of contamination and subsurface damage remaining on bulk substrates possibly due to polishing. Addition of a step involving annealing of the bulk substrate under H2: N2 environment, prior to growth, drastically reduced such macroscopic defects.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3