Author:
Besser Paul R.,Brennan Sean,Bravman John C.
Abstract
We describe a method for directly determining the strain state of passivated metal lines. Synchrotron radiation in the grazing incidence geometry is used to directly measure the in-plane interplanar spacing along the length and width of the lines, while the strain normal to the surface of the line is measured using conventional diffraction methods. The entire strain state is thereby defined. Previous work has measured out-of-plane reflections, fit them to a straight line as a trigonometric function of the angle of orientation, and extrapolated to determine the principal strains. The equivalence of the two x-ray methods on the same sample is demonstrated at room temperature before and after thermal cycling. For short time strain relaxation experiments during thermal cycling, measurement of the three principal strains leads to the direct calculation of the stress relaxation. We apply the strain determination technique to Al-0.5% Cu lines passivated with Si3N4 as the lines are thermally cycled from room temperature to 450 °C and back. The strain state, stress state, and strain relaxation of the lines are calculated at several temperatures during thermal cycling.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献