Influence of Filament and Substrate Temperatures on Structural and Optoelectronic Properties of Narrow Gap a-SiGe:H Alloys Deposited by Hot-Wire CVD

Author:

Xu Yueqin,Nelson Brent P.,Williamson D.L.,Gedvilas Lynn M.,Reedy Robert C.

Abstract

AbstractWe have found that narrow-bandgap—1.25 < Tauc Gap < 1.50 eV—amorphous silicon germanium (a-SiGe:H) alloys grown by hot-wire chemical vapor deposition (hot-wire CVD) can be improved by lowering both substrate and filament temperatures. We systematically study films deposited using a one-tungsten filament, decreasing filament temperature (Tf) from our standard temperature of 2150° down to 1750°C, and fixing all other deposition parameters. By decreasing Tfat the fixed substrate temperature (Ts) of 180°C, the Ge-H bonding increases, whereas the Si-H2bonding is eliminated. Films with higher Ge-H bonding and less Si-H2have improved photoconductivity. For the series of films deposited using the same germane gas fraction at 35%, the energy where the optical absorption is 1x104(E04) drops from 1.54 to 1.41 eV with decreasing Tf. This is mainly due to the combination of an increasing Ge solid fraction (x) in the film, and an improved homogeneity and compactness due to significant reduction of microvoids, which was confirmed by small angle X-ray scattering (SAXS). We also studied a series of films grown by decreasing the Tsfrom our previous standard temperature of 350°C down to 125°C, fixing all other deposition parameters including Tfat 1800°C. By decreasing Ts, both the total hydrogen content (CH) and the Ge-H bonding increased, but the Si-H2bonding is not measurable in the Tsrange of 180°-300°C. The E04 increases from 1.40 to 1.51 eV as Tsdecreased from 350° to 125°C, mainly due to the increased total hydrogen content (CH). At the same time, the photo-to-dark conductivity ratio increases almost three orders of magnitude over this range of Ts.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference12 articles.

1. Nanostructure of a-Si:H and Related Materials by Small-Angle X-Ray Scattering

2. Hydrogenated Amorphous Silicon Germanium Alloys Grown by the Hot-Wire Chemical Vapor Deposition Technique

3. Vibrational Spectra of Hydrogen in Silicon and Germanium

4. 4. Nelson B. P. , Xu Y. , Williamson D. L. , Han D. , Braunstein R. , Boshta M. , and Alavi B. , Sept. 2002, 2nd Intern. Conf. on Cat-CVD Process, Denver, Colorado, Thin Solid Films (in press).

5. 12. Reedy R.C. , Mason A.R. , Nelson B.P. , Xu Y. , American Institute of Physics, NICH Report No. 27431 (1999) pp. 537–541.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3