Distribution of Hydrogen- and Vacancy-Related Donor and Acceptor States in Helium-Implanted and Plasma-Hydrogenated Float-Zone Silicon

Author:

Job Reinhart,Niedernostheide Franz-Josef,Schulze Hans-Joachim,Schulze Holger

Abstract

AbstractThe formation and evolution of hydrogen- and vacancy-related donor and acceptor states were studied in helium-implanted and subsequently hydrogen plasma-treated n-type Float-Zone (FZ) silicon wafers by means of two-point-probe Spreading Resistance (SR) measurements. He+-implantation was executed at 3.75 MeV and 11 MeV at fluences of 1×1014 cm−2. Post-implantation 13.56-MHz RF-plasma hydrogenations were carried out at 150 W either for 15 min or 1 hour, applying substrate temperatures between 350 °C and 500 °C. Enhanced donor concentrations as well as acceptor-like states were observed in the subsurface layers of the treated FZ Si samples after 15-min post-implantation H-plasma exposures. Under appropriate process conditions, the latter ones compensated for the n-type doping, so that even buried p-type layers were created. The experimental results indicated that oxygen played a central role in the formation of the acceptor-like states.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A DLTS study of hydrogen doped czochralski-grown silicon;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2015-12

2. (Invited) The Thermal Budget of Hydrogen-Related Donor Profiles: Diffusion-Limited Activation and Thermal Dissociation;ECS Transactions;2013-03-15

3. Activation and Dissociation of Proton-Induced Donor Profiles in Silicon;ECS Journal of Solid State Science and Technology;2013

4. Conversion Efficiency of Radiation Damage Profiles into Hydrogen-Related Donor Profiles;Solid State Phenomena;2011-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3