Structural, electrical, and optical property studies of indium-doped Hg0.8Cd0.2Te/Cd0.96Zn0.04Te heterostructures

Author:

Han M. S.,Kang T. W.,Kim T. W.

Abstract

Transmission electron microsopy (TEM), Hall effect, and Fourier transform infrared (FTIR) transmission measurements were performed to investigate the structural, electrical, and optical properties of indium-doped Hg0.8Cd0.2Te epitaxial layers grown on Cd0.96Zn0.04Te (211) B substrates by molecular-beam epitaxy. The TEM measurements showed that high-quality Hg0.8Cd0.2Te epitaxial layers with interfacial abruptnesses were grown on the Cd0.96Zn0.04Te substrates. The Van der Pauw Hall effect measurements on typical indium-doped Hg0.8Cd0.2Te/Cd0.96Zn0.04Te heterostructures with a doping concentration of 6 × 1016 cm−3 at 10 K in a magnetic field of 0.5 T yielded a carrier density and a mobility of 2.2 × 1016 cm−3 and 40,000 cm2/V s, respectively. The FTIR spectra showed that the absorption edges of the indium-doped Hg0.8Cd0.2Te/Cd0.96Zn0.04Te heterostructures shifted to a shorter wavelength range than those of the undoped samples, which was caused by the Burstein–Moss effect. The FTIR spectra also showed that the transmittance intensities of the indium-doped Hg0.8Cd0.2Te/Cd0.96Zn0.04Te heterostructures increased compared with those of the undoped heterostructures, which is due to the compensation of the Hg vacancy defects by the indium atoms. These results indicate that the indium-doped Hg0.8Cd0.2Te epitaxial layers were high-quality n-type layers and that p-HgxCd1−xTe epilayers can be grown on indium-doped Hg0.8Cd0.2Te/Cd0.96Zn0.04Te heterostructures for the fabrication of HgxCd1−xTe photoconductors and photodiodes.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3