Combinatorial Approach for Thermoelectric Materials through Bulk Composition-Spreads and Diffusion Multiples

Author:

Yamamoto Atsushi,Noguchi Teruo,Obara Haruhiko,Ueno Kazuo,Ikeuchi Satoaki,Sugawara Tooru,Shimada Kenji,Takasaki Youichi,Ishii Yoshikazu

Abstract

AbstractIn this paper we describe a new attempt of high-throughput screening of thermoelectric materials by combining the use of the “bulk composition-spread (CS)” or “bulk diffusion multiples (DM)” and the “scanning thermal probe microanalyzer (STPM).” The (Bi2Te3)1-x(Sb2Te3)x (0<x<1) and Ni1-xCux (0<x<1) bulk CS samples were prepared by conventional powder metallurgy method by using mechanical alloying and spark plasma sintering process. The Ni-Cu-X (X=Sn, In, Bi.) DM sample was prepared by post-heating of the CS samples in a molten metal. The two dimensional distributions of Seebeck coefficient and the thermal conductivity of the cross section of the CS and DM samples which composed of graded composition were visualized by using STPM at room temperature. The composition variation was checked by EDX. The relationship between composition and the thermoelectric properties was successfully determined by using the mapping results. The time required for mapping out the 100x100 pixel image was 8 to 11 hours. The total time required for this set of the screening experiment, from sample preparation to the final conclusion, was within 24 hours. For samples Ni-Cu-X DM the diffusion length of the elements at the interface can be large as 1mm and it was found that STPM is applicable to visualize the thermoelectric properties at the region of interest.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3