Optical Direct and Indirect Excitation of Er3+ Ions In Silicon

Author:

Majima A.,Uekusa S.,Ootake K.,Abe K.,Kumagai M.

Abstract

ABSTRACTOptical direct and indirect excitation of erbium (Er) ions in silicon substrates was performed in order to investigate the high efficiency of Er3+− related 1.54µm emission (4I13/24I15/2) for direct excitation that is not concerned with the indirect band gap and low quantum efficiency of a Si host. The samples were prepared by ion-implantation or thermal diffusion methods. In each sample, photoluminescence (PL) showed the peaks originating from 4I13/24I15/2 of Er3+ ions.In Er thermally diffused samples, optical excitation for energy level 4I11/2 of Er3+ ions was successfully effected by photoluminescence excitation spectroscopy (PLE). The PLE spectra consisted six peaks (963. lnm, 965.Onm, 976.lnm, 978.9nm and 980.9nm) which were caused by direct excitation (4I15/24I11/2) of Er3+ ions. The emission directly excited is about 2 times more intense than the indirectly excited emission. The six peaks originating from the splitting of the 4I11/2 levels meant that Er3+ ions were in the sites of noncubic symmetry. The samples prepared by Er ion-implantation did not show the effect.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3