Intrinsic and Thermal Stress in Gallium Nitride Epitaxial Films

Author:

Ager J. W.,Suski T.,Ruvimov S.,Krueger J.,Conti G.,Weber E. R.,Bremser M. D.,Davis R.,Kuo C. P.

Abstract

ABSTRACTStrain in GaN epitaxial layers at room temperature is measured with three complementary methods: Raman spectroscopy (via shifts of phonon frequencies), low temperature photoluminescence (via shifts of band-edge luminescence), and X-ray diffraction (via shifts in lattice spacings). GaN films grown on the c-plane of sapphire tend to be in compression. Increasing the Si-dopant concentration (up to 1019 cm−3) is observed to add compressive strain to the layer. Axially resolved measurements obtained by micro-Raman in 4 μm thick Si-doped films reveal strain relaxation toward the sample surface at Si concentrations above 1018 cm−3. Mg- and Si-doped GaN films on SiC substrates are found to be in tension. An experimental methodology is presented that separates two contributions to the room temperature residual stress in GaN epilayers: (1) the thermal stress due to differences in the thermal expansion coefficients of the epilayer and substrate and (2) the intrinsic stress, which is influenced by the growth conditions. We measure stress as a function of temperature up to 325 C, about one-third of the growth temperature, by monitoring the frequency of the E2 phonon mode by Raman spectroscopy. A high-quality bulk single crystal of GaN is used as a strain-free standard. Over this temperature range, most layers behave elastically; the observed stress trends are well-fit by a thermal expansion model using previous reported values of the thermal expansion coefficients of GaN and the substrates. The intrinsic stress states at the growth temperature for films grown on sapphire and SiC are predicted to be tensile and compressive, respectively, in agreement with the a-plane lattice coefficient mismatch.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3