Low pressure chemical vapor deposition of B-N-C-H films from triethylamine borane complex

Author:

Levy R.A.,Mastromatteo E.,Grow J.M.,Paturi V.,Kuo W.P.,Boeglin H.J.,Shalvoy R.

Abstract

In this study, films consisting of B-N-C-H have been synthesized by low pressure chemical vapor deposition using the liquid precursor triethylamine borane complex (TEAB) both with and without ammonia. When no NH3 is present, the growth rate was observed to follow an Arrhenius behavior in the temperature range of 600 to 800 °C with an apparent activation energy of 11 kcal/mol. A linear dependence of growth rate is observed as a function of square root of flow rate for the TEAB range of 20 to 60 sccm, indicating that the reaction rate is controlled by the adsorption of borane. The addition of NH3 to TEAB had the effect of lowering the deposition temperature down to 300 °C and increasing the apparent activation energy to 22 kcal/mol. Above 650 °C, the carbon concentration of the deposits increased significantly, reflecting the breakup of the amine molecule. X-ray diffraction measurements indicated the films to be in all cases amorphous. Infrared spectra of the films showed absorption peaks representing the vibrational modes of B-N, B-N-B, B-H, and N-H. The index of refraction varied between 1.76 and 2.47, depending on composition of the films. Films deposited with no NH3 above 700 °C were seen to be compressive while films below that temperature were tensile. In the range of 350 to 475 °C, the addition of NH3 to TEAB resulted in films that were mildly tensile, while below 325 °C and above 550 °C, the films were found to be compressive. Both the hardness and Young's modulus of the films decreased with higher temperatures, reflecting the influence of the carbon presence.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3