Plasma-Assisted Chemical Vapor Deposition Processes

Author:

Bachmann P.K.,Gärtner G.,Lydtin H.

Abstract

Over the past two decades a vast number of publications have emerged from laboratories all over the world, describing the application of plasmas for preparing and processing materials. MRS symposia, scientific journals and books, and complete conference series are solely devoted to this specific topic.Modern VLSI integrated circuits, for instance, would simply not exist without sophisticated plasma etching techniques. But highly reactive, partly ionized and dissociated, quasi-neutral gases—plasmas—are not only useful for etching purposes, i.e., the removal of materials. They are also very valuable tools for the deposition of materials with unique structures and compositions at lower temperatures than for conventional thermally induced chemical vapor deposition processes. Backed by intensive research activities and more than a decade of practical experiences, plasma deposition technologies are now penetrating a number of industrial manufacturing processes.Plasmas can be classified into two basic categories — non-isothermal, and isothermal or thermal plasmas.Within the high electric fields applied for non-isothermal plasma generation at reduced pressure, free electrons are accelerated to energies that correspond to several thousand degrees in the case of thermal activation. The neutral species in the gas phase and the heavy ions are either not influenced by the fields or cannot follow changing fields fast enough. Their temperature stays low, resulting in a difference between electron and gas temperature. In these nonequilibrium plasmas, the collisions of high energy electrons and gas molecules result in dissociation processes that would only occur at very high temperatures of more than 5,000 K in the case of thermal equilibrium. Therefore, non-isothermal plasmas allow the preparation of materials and compositions that are difficult to obtain using thermally activated, conventional CVD. Due to the initiation of chemical reaction by collisions with “hot” electrons rather than hot gas molecules, the processing temperature can, in many cases, be kept lower than in conventional deposition processes.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis and characterization of Titanium Silicon Nitride (TiSiN) thin film: A review;IOP Conference Series: Materials Science and Engineering;2018-06

2. Electrical Discharge Machining (EDM): Nanoparticle Generation;Encyclopedia of Plasma Technology;2016-12-12

3. Wear resistance investigation of titanium nitride-based coatings;Ceramics International;2015-11

4. The CVD of the Allotropes of Carbon;Handbook of Chemical Vapor Deposition (CVD);1999

5. CVD Processes and Equipment;Handbook of Chemical Vapor Deposition (CVD);1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3