On the Nature of Grain Boundaries in Nanocrystalline Diamond

Author:

Keblinski P.,Wolf D.,Cleri F.,Phillpot S.R.,Gleiter H.

Abstract

The low-pressure synthesis of rather pure nanocrystalline diamond films from fullerene precursors suggests that for a small enough grain size the diamond structure may be energetically preferred over graphite. Because of the small grain size of typically about 15 nm in these films, a significant fraction of the carbon atoms is situated in the grain boundaries (GBs). The surprisingly high wear resistance of these films even after the substrate is removed and their high corrosion resistance suggest that the grains are strongly bonded. Grain-boundary carbon is also believed to be responsible for the absorption and scattering of light in these films, for their electrical conductivity, and for their electron-emission properties. In spite of all these indications of a critical role played by GB carbon in achieving the remarkable properties of nanocrystalline diamond films, to date the atomic structures of the GBs are essentially not known.It is well-known that the electronic and optical properties of polycrystalline silicon films are significantly affected by the presence of GBs. For example GBs can provide active sites for the recombination of electron-hole pairs in photovoltaic applications. Also, in electronic devices such as thin-film transistors, GBs are known to play an important role. Because of silicon's strong energetic preference for sp3 hybridization over other electronic configurations, the structural disorder in silicon GBs is accommodated by a distortion of the tetrahedral nearestneighbor bonds and in the extreme by the creation of dangling bonds—that is, of three-coordinated Si atoms each having one unsaturated, bound electron in an otherwise more or less tetrahedrally coordinated environment.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3