Diamond—the ultimate material for exploring physics of spin-defects for quantum technologies and diamondtronics

Author:

Das DhrubaORCID,Raj RahulORCID,Jana JayantaORCID,Chatterjee SubhajitORCID,Ganapathi K LORCID,Chandran ManeeshORCID,Ramachandra Rao M SORCID

Abstract

Abstract Diamond due to its outstanding optical, electrical, mechanical and thermal properties finds an important place in electronic, opto-electronic and quantum technologies. Recent progresses showing superconductivity in diamond by boron doping has opened up many avenues including its applications in SQUID devices especially with polycrystalline diamond films. Granular boron doped diamond films find applications in quantum inductance devices where high surface inductance is required. Particularly important are the defect centers in diamond like nitrogen-vacancy (N-V), silicon vacancy (SiV) and other color centers which are ideal candidates for next generation quantum hardware systems. For efficient device applications, an indispensable need remains for a substitutional donor in diamond lattice that yields a lower thermal activation energy at room temperature. In this review, a comprehensive summary of research and the technological challenges has been reported including some of the results on nitrogen doping in polycrystalline diamond to understand the transport phenomenon emphasizing on its possible future applications.

Funder

Ministry of Human Resource and Development for establishing “QuCenDiEM”

Department of Science and Technology (DST), New Delhi

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Acoustics and Ultrasonics,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rare isotope-containing diamond colour centres for fundamental symmetry tests;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-12-04

2. Multichannel Control for Optimizing the Speed of Imaging in Quantum Diamond Microscope;IEEE Sensors Journal;2023-10-15

3. Physics and technology of thermoelectric materials and devices;Journal of Physics D: Applied Physics;2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3