High temperature creep deformation of nanocrystalline diamond films
Author:
Mohr Markus1ORCID, Fecht Hans-Jörg1, Padmanabhan Kuppuswamy Anantha2
Affiliation:
1. Institute of Functional Nanosystems, Ulm University , Ulm , Germany 2. Materials Science & Engineering Program, Department of Mechanical Engineering , Anna University , Chennai , India
Abstract
Abstract
Diamond displays a combination of unique properties, including the highest hardness among materials, chemical inertness and high thermal conductivity. Therefore, nanocrystalline diamond films offer a huge potential for industrial applications. In fine-grained ceramics as well as metallic materials, high temperature creep deformation is dominated by grain-boundary-deformation mechanisms that become increasingly important with decreasing grain size. In this work we demonstrate that it is possible to inelastically deform nanocrystalline diamond films at elevated temperatures and stresses that are significantly lower than those reported for single-crystal diamond. The initial, isothermal, transient creep flow exhibits a logarithmic character, typical of creep in general. The isothermal steady state creep deformation, which follows transient creep, is analyzed using a physics-based model for grain boundary sliding rate controlled flow.
Publisher
Walter de Gruyter GmbH
Subject
Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics
Reference68 articles.
1. Wiora, M., Brühne, K., Fecht, H.-J. Synthesis of nanodiamond. In Carbon-based Nanomaterials and Hybrids; Fecht, H.-J., Brühne, K., Gluche, P., Eds. Pan Stanford Publishing: Singapore, 2014. 2. Wiora, M., Brühne, K., Flöter, A., Gluche, P., Willey, T. M., Kucheyev, S. O., van Buuren, A. W., Hamza, A. V., Biener, J., Fecht, H.-J. Diam. Relat. Mater. 2009, 18, 927–930. https://doi.org/10.1016/j.diamond.2008.11.026. 3. Mohr, M., Caron, A., Herbeck-Engel, P., Bennewitz, R., Brühne, K., Fecht, H.-J. J. Appl. Phys. 2014, 116, 124308. https://doi.org/10.1063/1.4896729. 4. Mohr, M., Behroudj, A., Wiora, N., Mertens, M., Brühne, K., Fecht, H.-J. Quantum Matter 2017, 6, 1–4. https://doi.org/10.1166/qm.2017.1395. 5. Flöter, A., Gluche, P., Bruehne, K., Fecht, H.-J. Met. Powder Rep. 2007, 62, 1619–1720. https://doi.org/10.1016/S0026-0657(07)70041-3.
|
|