Author:
Besser Paul R.,Marieb Thomas N.,Lee Jin,Flinn Paul A.,Bravman John C.
Abstract
X-ray diffraction has been used to measure the strain relaxation in passivated Al–0.5% Cu lines at 200 °C after cooling directly from an anneal at the passivation deposition temperature of 380 °C. Fits to the measured X, Y, and Z components of strain are summed to obtain the hydrostatic component, which exhibits a decay over time. Three mechanisms are considered to explain the decay of the hydrostatic strain in the metal line: Cu precipitation from the solid solution, the presence and growth of voids in the lines, and time-dependent deformation of the passivation. Calculations of the effect of Cu precipitation from the solid solution demonstrate that it plays an insignificant role in the relaxation. A high-voltage scanning electron microscope is used to image the presence and growth of voids through the passivation. The time scale of the growth of stress-induced voids is not the same as the hydrostatic relaxation, indicating that voiding is not solely responsible for the observed relaxation. The relaxation of the line is modeled using a time-dependent finite element model, allowing elastic compliance of the passivation. The magnitude of the calculated relaxation agrees with the measurements. It is suggested that a combination of voiding and passivation compliance is responsible for the measured hydrostatic strain relaxation in the metal line.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献