The Effect of Impurities on Diffusion and Activation of ion Implanted Boron in Silicon

Author:

Robertson L. S.,Brindos R.,Jones K. S.,Law M. E.,Downey D. F.,Falk S.,Liu J.

Abstract

AbstractThe interaction between boron and silicon interstitials caused by ion implant damage is a physical process which hinders the formation of ultra-shallow, low resistivity junctions. The possibility of mitigating the effective interstitial point defect population via introduction of nonmetallic impurities in ion implanted silicon has been investigated. Amorphization of a n-type Czochralski wafer was achieved using a series of Si+ implants of 40 keV and 150 keV, each at a dose of 1×1015/cm2. The Si+ implants produced a 2800Å deep amorphous layer, which was then implanted with 8 keV 1×1014/cm2 B+. The samples were then implanted with high doses of either carbon, oxygen, sulfur, chlorine, selenium, or bromine. The implant energies of the impurities were chosen such that the damage and ion profiles of the impurity were contained within the amorphous layer. This allowed for the chemical species effect to be studied independent of the implant damage caused by the impurity implant. Post-implantation anneals were performed in a tube furnace at 750° C. Secondary ion mass spectrometry was used to monitor the dopant diffusion after annealing. Hall effect measurements were used to study the dopant activation. Transmission electron microscopy (TEM) was used to study the end-of-range defect evolution. The addition of carbon and chlorine appear to reduce the boron diffusion enhancement compared to the boron control. Carbon and chlorine also appear to prevent boron out-diffusion during annealing compared to the control, which exhibited 20% dose loss following annealing.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boron Doping in Next-Generation Materials for Semiconductor Device;Characteristics and Applications of Boron;2022-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3