Author:
Volksen Willi,Yoon D. Y.,Hedrick J. L.,Hofer D.
Abstract
ABSTRACTThe modification of the pendant acid groups along the poly(amic acid) backbone in the form of alkyl ester groups leads to greatly improved polyimide precursors. These poly(amic alkyl esters) are characterized by the absence of hydrolytic instability due to elimimation of the “monomer-polymer” equilibrium associated with poly(amic acids), a broad imidization temperature regime, improved solubility characteristics, and enhanced mechanical properties. In the absence of hydrolytic instability, it is now possible to use an aqueous work-up of the polyimide precursor. This presents an attractive synthetic pathway for the preparation of well-defined, amine-terminated oligomers. Such oligomers can then be utilized both in the preparation of low molecular weight, chain-extendable polyimide precursors as well as polyimide block copolymers. The higher imidization temperatures offered by the “amic ester” chemistry allows for more efficient chain extension prior to imidization. Alternatively, the lack of the “monomer-polymer” equilibrium and accompanying propensity for monomer randomization reactions presents a potential pathway for the preparation of polyimide blends.
Publisher
Springer Science and Business Media LLC
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献