Effect of Electron Incidence in Epitaxial Growth of CeO2(110) Layers on Si(100) Substrates

Author:

Inoue Tomoyasu,Yamamoto Yasuhiro,Satoh Masataka

Abstract

ABSTRACTWith the aim of lowering epitaxial growth temperature, the effect of electron incidence is studied in the epitaxial growth of CeO2(110) layers on Si(100) substrates by electron-beam evaporation in an ultrahigh vacuum. Two growth methods are employed: evaporation under substrate bias application and electron-beam assisted evaporation. In evaporation at positive substrate bias, electrons and anions from an evaporation source are attracted to the substrate surface, resulting in successful epitaxial temperature lowering. It is clarified that facilitation of the epitaxial growth is attributed only to electron incidence. The electronic current component is measured to be on the order of 10−4 A, about half of the total current. In using electron-beam assisted evaporation for higher current (10−3 A), electron-beam irradiation is demonstrated to have a much greater effect in both the growth temperature lowering and the crystalline quality improvement. The epitaxial growth facilitation effect increases with electron energy in both evaporation methods. It is clarified that the epitaxial growth temperature is lowered to 720°C, i. e., epitaxial growth temperature lowering of ∼100°C compared with the conventional growth method, both by evaporation with substrate bias at +240 V and 240 eV-electron-beam assisted evaporation, wherein the latter produces higher crystalline quality layers.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3