Author:
Atzmon Z.,Eizenberg M.,Revesz P.,Mayer J. W.,Schäffler F.
Abstract
ABSTRACTSolid phase epitaxial regrowth of Sb implanted strained Si1−x Gex alloy layers is reported. Two sets of Si1–xGex alloys with compositions of x=0.08 and x=0.18, MBE grown on (100)Si substrates, were implanted at room temperature with Sb− ions at energies of 200 and 100 keV, respectively, and a dose of 1015cm−2. These alloys were heat-treated in a rapid thermal annealing system at temperatures of 525, 550 and 575°C for durations between 5 and 600 sec. The study of the solid phase epitaxial regrowth was performed by Rutherford backscattering in the channeling mode. The measurements show a significant difference in the regrowth mechanism between the two alloys. For the Si0.92Ge0.00 alloy a fast regrowth process (faster than for Sb implanted Si or Si implanted SiGe layers) occured with an activation energy of 2.92±0.2eV. For the Si0.02Ge0.10 alloy the regrowth took place in two steps: a) a very fast initial process over a short distance, b) a regrowth process of the majority of the amorphous layer.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献