High Yield Polycarbosilane Precursors to Stoichiometric SiC. Synthesis, Pyrolysis and Application

Author:

Interrante Leonard. V.,Whitmarsh C.W.,Sherwood W.,Wu H.-J.,Lewis R.,Maciel G.

Abstract

ABSTRACTThe synthesis and properties of two polycarbosilanes that have essentially a “SiH2CH2” composition is described. One of these polymers is a highly branched hydridopolycarbosilane (HPCS) derived from Grignard coupling of CI3SiCH2CI followed by LiAIH4 reduction. This synthesis is amenable to large scale production and we are exploring applications of HPCS as a source of SiC coatings and its allyl-derivative, AHPCS, as a matrix source for SiC- and C-fiber-reinforced composites. These polymers thermoset on heating at 200-400 °C (or at 100 °C with a catalyst) and give near stoichiometric SiC with low O content in ca. 80% yield on pyrolysis to 1000 °C. The second method involves ring-opening polymerization of 1,1,3,3-tetrachlorodisilacyclobutane and yields a high molecular weight, linear polymer that can be reduced to [SiH2CH2]n (PSE), the monosilicon analog of polyethylene. In contrast to high density polyethylene which melts at 135 °C, PSE is a liquid at room temperature which crystallizes at ca. 5 °C. On pyrolysis to 1000 °C, PSE gives stoichiometric, nanocrystalline, SiC in virtually quantitative yield. The polymer-to-ceramic conversion was examined for PSE by using TGA, mass spec, solid state NMR, and IR methods yielding information regarding the cross-linking and structural evolution processes. The results of these studies of the polymer-to-ceramic conversion process and our efforts to employ the AHPCS polymer as a source of SiC matrices are described.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference24 articles.

1. An Investigation Into the Preparation, Properties, and Processing of SiC/AIN and Si3N4/AIN Solid Solutions from Organometallic Precursors.

2. 8 Strife J.R. , Wesson J.P. , and Streckert H.H. , "A Study of the Critical Factors Controlling the Synthesis of Ceramic Matrix Composites from Preceramic Polymers", US Government Report No. AD-A23 686, December 1990

3. B.C. Mutsuddy, Ceramics International 13, 41 (1987)

4. R.P. Boisvert, "Ceramic Matrix Composites via Organometallic Precursors", M.S. Thesis, Rensselaer Polytechnic Institute, 214 pages (1988).

5. Silicon Nitride Derived from an Organometallic Polymeric Precursor: Preparation and Characterization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3