A four-point bending technique for studying subcritical crack growth in thin films and at interfaces

Author:

Ma Qing

Abstract

A technique was developed to obtain the subcritical crack growth velocity in a 4-point bending sample by analyzing the load-displacement curve. This was based on the observation that the compliance of a beam increases as the crack grows. Beam theory was used to analyze the general configuration where two cracks propagated in the opposite directions. A simple equation relating the crack velocity to the load and displacement was established, taking advantage of the fact that the compliance was linearly proportional to the crack lengths; thus the absolute crack length was not important. Two methods of obtaining crack velocity as a function of load were demonstrated. First, by analyzing a load-displacement curve, a corresponding velocity curve was obtained. Second, by changing the displacement rate and measuring the corresponding plateau load, a velocity value was calculated for each plateau load. While the former was capable of obtaining the dependence of crack velocity versus load from a single test, the latter was found to be simpler and more consistent. Applications were made to a CVD SiO2 system. In both cases of crack propagation either inside the SiO2 layer or along its interface with a TiN layer, the crack growth velocity changed with the stress intensity at the crack tip exponentially. As a result, a small crack will grow larger under essentially any tensile stresses typically existing in devices, provided that chemical agents facilitating stress corrosion mechanisms are also present.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3