Recombination Activity of Individual Extended Defects in Silicon

Author:

Cavallini A.,Castaldini A.

Abstract

ABSTRACTDislocations and point defects introduce energy levels deep in the gap, which dramatically change the material electrical properties. Because of the coexistence of a multitude of dislocation types and dislocation-point defect interaction mechanisms, it would be highly desirable to identify the particular type of defect related to specific traps.The electrical activity of extended defects (planar precipitates and dislocations) is here examined in terms of their recombination activity, investigated by electron as well as light beam induced current methods of scanning microscopy.Besides, a scanning modification of spectroscopy is used to identify traps at individual defects. The method, named quenched infra-red beam induced current, combines the scanning light beam induced current technique with the spectroscopie bulk analysis called “infrared quenching of photoconductivity”.Defect energy levels are found on the basis of the particular features of the beam induced current as a function of injected carrier generation rate, temperature and quenching excitation.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3