Nanotopography Issues in Shallow Trench Isolation CMP

Author:

Boning Duane,Lee Brian

Abstract

AbstractAs advancing technologies increase the demand for planarity in integrated circuits, nanotopography has emerged as an important concern in shallow trench isolation (STI) on wafers polished by means of chemical–mechanical planarization (CMP). Previous work has shown that nanotopography—small surface-height variations of 10–100 nm in amplitude extending across millimeter-scale lateral distances on virgin wafers—can result in CMP-induced localized thinning of surface films such as the oxides or nitrides used in STI. A contact-wear CMP model can be employed to produce maps of regions on a given starting wafer that are prone to particular STI failures, such as the lack of complete clearing of the oxide in low spots and excessive erosion of nitride layers in high spots on the wafer. Stiffer CMP pads result in increased nitride thinning. A chip-scale pattern-dependent CMP simulation shows that substantial additional dishing and erosion occur because of the overpolishing time required due to nanotopography. Projections indicate that nanotopography height specifications will likely need to decrease in order to scale with smaller feature sizes in future IC technologies.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tribological, Thermal and Kinetic Characterization of SiO2 and Si3N4 Polishing for STI CMP on Blanket and Patterned Wafers;ECS Journal of Solid State Science and Technology;2020-05-04

2. Density Optimization for Analog Layout Based on Transistor-Array;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2019-12-01

3. Status of UV Imprint Lithography for Nanoscale Manufacturing;Reference Module in Materials Science and Materials Engineering;2017

4. Local Wafer Shape Characterization;ECS Journal of Solid State Science and Technology;2015

5. Inkjet-based deposition of polymer thin films enabled by a lubrication model incorporating nano-scale parasitics;Physics of Fluids;2013-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3