Double Beam Photoconductivity Modulation System and its Application to the Characterization of a Process of Photoresist Removal

Author:

Usami A.,Fujiwara H.,Nakai T.,Matsuki K.,Takeuchi T.,Wada T.

Abstract

ABSTRACTA laser/microwave method using two lasers of different wavelengths for carrier injection is proposed to evaluate near surface regions. These lasers are a He-Ne (wavelength=633nm, penetration depth=∼3μm) and a YAG lasers (wavelength=1060nm, penetration depth=∼500μm). Using a microwave probe, the amount of injected excess carriers can be detected. The carrier concentration is mainly dependent on the condition of the surface when carriers are excited by the He-Ne laser. It is mainly dependent on the condition of the bulk region when carriers are excited by YAG laser. We refer to microwave intensities detected by the He-Ne and the YAG lasers as the surface-recombination-velocity-related microwave intensity (SRMI) and bulkrelated microwave intensity (BRMI), respectively. We refer to the difference between SRMI and BRMI as relative SRMI (R-SRNI), which is closely related to the condition of surface and surface active region. We evaluate the near surface regions of the samples after plasma and wet etching for removing the photoresist layer. And we evaluate the near surface regions of the samples after a heat treatment which is done to recover the damage introduced by plasma etching. It is found that the R-SRMI method is better suited to near surface region evaluation than conventional lifetime measurements.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference10 articles.

1. High-sensitivity surface characterization with injected carriers by lasers beam using focused reflectance microwave probe method

2. Contactless Measurements of the Surface Recombination Velocity of P—N and High—Low (P—P+, N—N+) Junctions Fabricated by Rapid Thermal Processing

3. 4. Usami A. , Fujiwara H. , Yamada N. , Matsuki K. , Takeuchi T. and Wada T. , The Institute of Electronics, Information and Communication Engineers (IEICE) Transaction on Electronics (to be published)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3