Damage Removal of Low Energy Ion Implanted BF2 Layers in Silicon

Author:

Myers E.,Hren J. J.

Abstract

AbstractRecent results indicate that thermal budgets associated with ion implantation induced end of range damage removal is affected by the presence of a free surface. Low energy BF2 implants (6 keV) were done into both single crystal and Ge preamorphized silicon substrates. Rapid thermal processing was used to study the residual end of range defect structure in the temperature range from 700 to 1000°C. 6 keV, 5E14 cm-2 BF2 implantation resulted in formation of continuous amorphous layers approximately 10 nm deep with a mean B penetration of approximately 7 nm. Conventional TEM analysis found the structures to be completely free of any spanning “hairpin” dislocations or stacking faults associated with the BF2 implant for all the annealing temperatures. For anneals between 700 °C and 900°C end of range damage formation resulted, but the size of the dislocation loops remained small. Annealing at 1000°C, 10 seconds showed no evidence of residual end of range damage. Location of the end of range damage region close to the free surface was found to decrease the thermal budget required for the removal of ion implantation induced radiation damage.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Defects in Ge+-preamorphized silicon;Journal of Applied Physics;1999-11-15

2. Structural and electrical properties of p+n junctions in Si by low energy Ga+ implantation;Journal of Applied Physics;1997-11-15

3. End-of-range disorder influenced by inherent oxygen in silicon;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;1992-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3