Author:
Lindfors C. D.,Jones K. S.,Rendon M. J.
Abstract
ABSTRACTThe work described herein focuses on examining the effect of solid phase epitaxial regrowth (SPER) on boron implanted silicon. It is shown that boron levels within the silicon can greatly enhance or reduce the regrowth rate of the silicon. Electrical measurements show optimum sheet resistances for 5 keV, 2×1015 cm−2 implant conditions yielding sheet resistance values of ∼140 Ω/sq at 500 °C annealing to ∼120 Ω/sq at 650 °C. Results using Hall effect and four-point probe show lower doses of boron will become fully active but levels will drop significantly as dose is increased. Lastly, maximum active concentrations of boron appear to reach values of ∼3-4×1020 cm−3 for a boron dose of 1×1015 cm−2 after SPER. Lower SPER anneal temperatures or higher doses tend to activate less boron.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Boron Doping in Next-Generation Materials for Semiconductor Device;Characteristics and Applications of Boron;2022-10-26
2. Electrical activation and lattice location of B and Ga impurities implanted in Si;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2004-06