Author:
Detavernier C.,Özcan A.,Lavoie C.,Sweet Jean-Jordan,Harper J. M. E.
Abstract
ABSTRACTWe have studied the kinetics of NiSi agglomeration and NiSi2 phase formation during heating of NiSi on Si, using simultaneous in situ measurements of resistance, light scattering and x-ray diffraction. NiSi is a desirable contact to Si because of its low resistivity, limited Si consumption and low formation temperature. However, the formation of the higher resistivity phase NiSi2 must be avoided for device applications. Ni thin films 5 to 30 nm thick were deposited on substrates of poly-Si and silicon-on-insulator (SOI) and were studied using heating rates from 0.3 to 27 °C/s. At low heating rates and for the thinnest films studied, NiSi agglomeration precedes NiSi2 nucleation by as much as 350°C. The agglomeration temperature decreases with decreasing film thickness and linewidth. Once the film is agglomerated, the formation of NiSi2 is delayed to higher temperature by its low nucleation site density and decreased contact area. We conclude that agglomeration is the primary failure mechanism limiting the morphological stability of NiSi as a contact material to Si devices.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献