Iron and Nickel Solubilities in Heavily Doped Silicon and their Energy Levels in the Silicon Band Gap at Elevated Temperatures

Author:

McHugo S.A.,McDonald R.J.,Smith A.R.,Hurley D.L.,Istratov A.A.,Hieslmair H.,Weber E.R.

Abstract

AbstractWe have directly measured the solubility of iron and nickel in high and low boron-doped silicon using Instrumental Neutron Activation Analysis. Boron doping levels were 1.5×1019 and 6.5× 1014 atoms/cm3. Iron and nickel impurity concentrations were measured after extended indiffusions at 800, 900, 1000 and 1100°C for iron and 600, 700 and 800°C for nickel. We have measured a significant enhancement of Fe and Ni concentrations in high boron-doped silicon as compared to low boron-doped silicon. Based on these measurements, we show the iron donor energy level shifts towards the valence band with increased temperature, e.g. at 900°C the donor level is 0.24eV above the valence band as opposed to 0.39eV at room temperature. These results demonstrate that the impurity energy level shift with temperature must be accounted for in any prediction of segregation gettering of metal impurities into heavily doped substrates and heavily implanted doping layers. Additionally, our results suggest that either Ni solubility is greatly enhanced and/or the Ni diffusivity is greatly decreased with high boron doping of silicon.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3