Electron Beam Induced Nanometre Hole Formation and Surface Modification in Al, Si And MgO

Author:

Bullough Tim J.,Humphreys C. J.,Devenish R. W.

Abstract

ABSTRACTA wide variety of materials which are normally undamaged when exposed to a lOOkeV electron beam in a conventional transmission electron microscope can be modified on a nanometre scale by the high current density electron probe in a dedicated scanning transmission electron microscope (STEM). A stationary 100keV STEM electron probe can produce holes typically l-5nm diameter through crystalline Al, Si and MgO tens of nanometres in thickness, while a scanned electron beam can smooth surfaces on an atomic scale.In Al the stationary electron probe in the STEM produces a row of facetted voids along the irradiated volume. The voids grow initially inwards from the electron exit surface, with each void typically 4nm in diameter and 12-24nm in length, separated by equal distances from one another. In contrast, continuous holes 1.2-1.6nm diameter form at the electron exit surface of Si when exposed to the focused electron beam. However, these holes form only at specific randomly distributed points separated from one another by 2-4nm over the surface of crystalline specimens of both n- and p-doped <001> and <111> Si.Square cross-section holes with widths of about lnm can be formed by the stationary electron probe in MgO crystals. Rastering the probe over a restricted area of MgO initially results in the rapid development of surface islands and channels which are subsequently removed to leave an atomically smooth surface.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3