Abstract
ABSTRACTA well-known process for thinning of silicon by slicing submicron-thick crystalline films from substrates uses direct implantation of protons. In this paper we describe a different way of delivering hydrogen to a cleavage plane. In our process a defect-rich buried layer is first formed with ion implantation. Defects in the as-implanted silicon work as traps for hydrogen. Next monatomic hydrogen is delivered to the trap layer by electrolytic charging. To check sliceability, the samples were annealed and blistering was observed. Evidence of blistering is a sign of potential cleavage. The electrolytic charging was performed using a simple two-electrode cell. The front side of the as-implanted silicon wafer was exposed to an electrolyte. The backside of the wafer was contacted with an aluminum layer and connected to a current source. The acidic electrolyte was buffered with ethylene glycol. Buffering was used to suppress bubbling on the wafer surface and to improve the uniformity of charging. To increase charging current the wafer was illuminated with visible light. A graphite rod was used as the positive electrode in the cell. A few Coulombs per square centimeter of the wafer were passed through the cell during the hydrogenation process. The depth of blisters is about 1/2 of projection range of the implanted ions. It means that the hydrogen platelets are formed in the region of maximum of vacancy- enriched post-implantation defects. This process of electrolytic hydrogen charging may be used in future to manufacture silicon-on-insulator wafers with very thin top silicon layer. Thin SOI offers important advantages in the production of substrates for mainstream CMOS integrated circuit manufacturing.
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. 1. Auberton-Herve A.J. , “Commercialization Of Thick And Thin SOI by The Smart CutTM Process, in this Proceeding,” (2001).
2. 17. Usenko A.Y. , “Process for lift-off a layer from a substrate” US Patent Pending 09/578896, 01/06/2000.
3. Silicon on insulator material technology
4. A “smarter-cut” approach to low temperature silicon layer transfer
5. Hydrogen and helium bubbles in silicon
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献