CMOS-Compatible Through Silicon Vias for 3D Process Integration

Author:

Tsang Cornelia K.,Andry Paul S.,Sprogis Edmund J.,Patel Chirag S.,Webb Bucknell C.,Manzer Dennis G.,Knickerbocker John U.

Abstract

ABSTRACTAs the limits of traditional CMOS scaling are approached, process integration has become increasingly difficult and resulting in a diminished rate of performance improvement over time. Consequently, the search for new two- and three- dimensional sub-system solutions has been pursued. One such solution is a silicon carrier-based System-on-Package (SOP) that enables high-density interconnection of heterogeneous die beyond current first level packaging densities. Silicon carrier packaging contains through silicon vias (TSV), fine pitch Cu wiring and high-density solder pads/joins, all of which are compatible with traditional semiconductor methods and tools. These same technology elements, especially the through silicon via process, also enable three dimensional stacking and integration. An approach to fabricating electrical through-vias in silicon is described, featuring annular-shaped vias instead of the more conventional cylindrical via. This difference enables large-area, uniform arrays to be produced with high yield as it is simpler to integrate into a conventional CMOS back-end-of-line (BEOL) process flow. Furthermore, the CTE-matched silicon core provides improved mechanical stability and the dimensions of the annular via allows for metallization by various means including copper electroplating or CVD tungsten deposition. An annular metal conductor process flow will be described. Through-via resistance measurements of 50, 90, and 150μm deep tungsten-filled annular vias will be compared. Two silicon carrier test vehicle designs, containing more than 2,200 and 9,600 electrical through-vias, respectively, were built to determine process yield and uniformity of via resistance. Through silicon via resistances range from 15-40 mΩ, and yields in excess of 99.99% have been demonstrated.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plasma-Activated Bonding;Handbook of Wafer Bonding;2012-02-08

2. Fabrication and characterization of reactive nanoscale multilayer systems for low-temperature bonding in microsystem technology;Journal of Micromechanics and Microengineering;2010-06-01

3. 3D Process Technology Considerations;Integrated Circuits and Systems;2009-10-30

4. Perfect Conformal Deposition of Electroless Cu for High Aspect Ratio Through-Si Vias;Electrochemical and Solid-State Letters;2009

5. 10.5104/jiep.12.104;Journal of Japan Institute of Electronics Packaging;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3