Abstract
ABSTRACTThis paper presents data showing a Meyer-Neldel rule (MNR) in InGaAsN alloys. It is shown that without this knowledge, significant errors can be made using Deep-Level Transient-Spectroscopy (DLTS) emission data to determine capture cross sections. The errors arise because of the neglect of significant transition entropy changes associated with multiphonon excitation of charge from deep traps. Ignoring the entropy change results in cross section values ranging over five orders-of-magnitude in InGaAsN alloys and 18 orders-of-magnitude in CuInGaSe alloys. Only by correctly accounting for the MNR and the accompanying entropy changes in analyzing the DLTS data will the correct value of the cross section be obtained.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献