High Deposition Rate a-Si:H for the Flat Panel Display Industry

Author:

Hautala J.,Saleh Z.,Westendorp J. F. M.,Meiling H.,Sherman S.,Wagner S.

Abstract

AbstractHigh deposition rates and good quality electrical properties and thickness uniformities over large areas are required for all three films (SiNx, a-Si:H and n+a-Si:H) composing the thin film transistors (TFTs) for the AMLCD industry, while maintaining high tool up-time and low particle formation. Generally these conditions have been achieved for most single-panel multichamber PECVD systems; however, it has become increasingly apparent that a compromise is drawn between the TFT mobility and the deposition rate of the a-Si:H layer. Thus it becomes essential to clearly assess the industry requirements for both deposition rates as well as TFT performance for the different device structures used for AMLCDs, and to discover and control these underlying material properties.The TEL VHF (40/60 MHz) PECVD system produces high quality, low defect density a- Si:H at deposition rates exceeding 1500 Å/min when analyzed by FTIR, CPM, photo and dark conductivity. Even though the low deposition rate a-Si:H exhibits very similar bulk properties, higher mobility TFTs are produced with a-Si:H deposited at lower RF power. Having both a high ion flux and low ion energy in the SiH4 discharge are likely the most critical conditions for controlling the a-Si:H quality and thus the TFT mobility. Increasing the RF frequency enhances both of these effects, as well as provides a higher deposition rate for a given power density and a higher power threshold for particle/powder formation. For these reasons it is likely a 40/60 MHz plasma will produce better performing TFTs for a given deposition rate when compared with a conventional 13.56 MIHz system. Other process conditions such as diluting the SiH4 in H2 or Ar also seem to play an important role in the optoelectronic properties of the a-Si:H film and ultimately the TFT performance.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3