Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature

Author:

Aaltonen Titta,Ritala Mikko,Tung Yung-Liang,Chi Yun,Arstila Kai,Meinander Kristoffer,Leskelä Markku

Abstract

The low limit of the deposition temperature for atomic layer deposition (ALD) of noble metals has been studied. Two approaches were taken; using pure oxygen instead of air and using a noble metal starting surface instead of Al2O3. Platinum thin films were obtained by ALD from MeCpPtMe3 and pure oxygen at deposition temperature as low as 200 °C, which is significantly lower than the low-temperature limit of300 °C previously reported for the platinum ALD process in which air was used as the oxygen source. The platinum films grown in this study had smooth surfaces, adhered well to the substrate, and had low impurity contents. ALD of ruthenium, on the other hand, took place at lower deposition temperatures on an iridium seed layer than on an Al2O3 layer. On iridium surface, ruthenium films were obtained from RuCp2 and oxygen at 225 °C and from Ru(thd)3 and oxygen at 250 °C, whereas no films were obtained on Al2O3 at temperatures lower than 275 and 325 °C, respectively. The crystal orientation of the ruthenium films was found to depend on the precursor. ALD of palladium from a palladium β-ketoiminate precursor and oxygen at 250 and 275 °C was also studied. However, the film-growth rate did not saturate to a constant level when the precursor pulse times were increased.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3