Analysis of Phase Transformation Kinetics by Intrinsic Stress Evolutions During the Isothermal Aging of Amorphous Ni(P) and Sn/Ni(P) Films

Author:

Song J.Y.,Yu Jin,Lee T.Y.

Abstract

The kinetics for the crystallization of amorphous Ni(P) films and the formation of intermetallic compounds in Sn/Ni(P) films during isothermal aging treatment were studied with in situ intrinsic stress measurements. The intrinsic stress changes from crystallization were about 200 and 150 MPa for Ni(14P) and Ni(11.7P) films, respectively, and according to Johnson–Mehl–Avrami analysis, the Avrami exponents were about 3.6 ± 0.46 and 4.2 ± 0.39, and the activation energies were 242 and240 kJ/mol, respectively, for the crystallization of Ni(14P) and Ni(11.7P) films. The stress due to the formation of intermetallic compounds such as Ni3Sn4 and Ni3P in Sn/Ni(11.7P) films was about 320 MPa. Application of in situ stress measurementsto the empirical growth model during isothermal phase transformation of Sn/Ni(P) showed that the intermetallic compounds growth was interface reaction-controlled (n = 0.91 ± 0.08) in the early stage and then became diffusion-controlled (n =0.38 ± 0.01), and the activation energy was about 35.9 kJ/mol.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3