Analysis of Drain Currents During Switching off a-Si:H Based Thin Film Transistors

Author:

Lemmi F.,Street R. A.

Abstract

ABSTRACTWe present measurements and analysis of a-Si:H thin film transistor (TFT) transients when the gate voltage switches the device from a conducting to a non-conducting state. The drain current transient has been monitored in the medium-long (Ims-100s) time range and exhibits a power law decay extending to at least 10 seconds. The decay has been studied over a range of drain voltages and gate off-state voltages. Measured data show that the gate off-state can help to obtain a low drain leakage current at long times when high drain voltages are being used.However, the decay at low drain voltages shows little sensitivity to different gate off-state voltages. An analytical model is developed, based on the relaxation of the Fermi level toward mid-gap in a spatially uniform TFT channel. The model shows how deep defects are responsible for the current decay slope at long times, while shallower states determine the slope in the short time range. An energy-independent defect density would produce a 1/t slope for the current decay. Shallow states and deep states affect in opposite ways the slope since their density is energydependent in opposite ways as Fermi level moves deeper into the band-gap. Furthermore, long decay times are associated with a wider depletion region in the channel and increase the total number of defect states involved. A steeper decay than 1/t is expected and observed for shorttime ranges, while a more gradual (about 1/t1/2) one corresponds to long time measurements. The implications of the transient decay for the performance of active matrix arrays will be discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3