Author:
Gerbi J. E.,Voyles P.,Gibson J. M.,Abelson O J. R.
Abstract
ABSTRACTWe analyze the formation kinetics and microstructure of hydrogenated vs. deuterated microcrystalline (μc-Si:H or D) thin films using real-time spectroscopic ellipsometry, post- deposition thermal hydrogen evolution, and TEM. The films are deposited by reactive magnetron sputtering of a silicon target in Ar (1.65 mT) with added partial pressures of H2or D2(0-5.5mT) on Coming 7059 glass substrates at 230°C. Amorphous films are deposited when PH2=0. When hydrogen is added to the chamber, the reactive magnetron sputtering process generates a flux of fast neutral H which promotes stc-Si growth. The substitution of D for H varies the kinetics of hydrogen reflection from the target and implantation into the growing film. We analyze the amorphous to microcrystalline transition as a function of the isotope (H2or D2) and pressure used in the deposition process. We find that the films enter the microcrystalline regime at lower D2pressures than H2pressures. Furthermore, the <ε2> data determined by ellipsometry have a different shape for deuterated films, compared to hydrogenated films at similar growth pressures. This indicates changes in band structure which we interpret as evidence for enhanced crystallinity.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献