Grain Growth in Al-(Cu, Pd, Nb) Thin Films

Author:

Mis J.D.,Rodbell K.P.

Abstract

AbstractThe microstructure of 1 μim thick Al films containing 0.5 and 2%Cu (weight percent), 0.3%Pd, and 0.3%Pd-0.3%Nb were investigated by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS) as a function of isochronal and isothermal anneals. The grain size, grain size distribution, and precipitate morphology of these films was measured from 200 to 500ºC, with the activation energy for grain growth (Ea) determined for I h anneals at 200, 300, 400 and 500ºC. Normal grain growth was recorded for the A1Cu films annealed at temperatures ≤400ºC; however secondary grain growth occurred in the AI-2Cu film annealed for I h at 500ºC, with grains as large as 16 μm in diameter observed. Grain growth in the AI-0.3Pd films resulted in strongly bi-modal grain size distributions, with the onset ofsignificant grain growth retarded for I h anneals at temperatures ≤300ºC.The addition of Nb to the AI-0.3Pd film resulted in monomodal grain size distributions over the entire temperature range. The role of crystallographic texture on grain growth in thin films is discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3