Abstract
AbstractThe microstructure of 1 μim thick Al films containing 0.5 and 2%Cu (weight percent), 0.3%Pd, and 0.3%Pd-0.3%Nb were investigated by transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDS) as a function of isochronal and isothermal anneals. The grain size, grain size distribution, and precipitate morphology of these films was measured from 200 to 500ºC, with the activation energy for grain growth (Ea) determined for I h anneals at 200, 300, 400 and 500ºC. Normal grain growth was recorded for the A1Cu films annealed at temperatures ≤400ºC; however secondary grain growth occurred in the AI-2Cu film annealed for I h at 500ºC, with grains as large as 16 μm in diameter observed. Grain growth in the AI-0.3Pd films resulted in strongly bi-modal grain size distributions, with the onset ofsignificant grain growth retarded for I h anneals at temperatures ≤300ºC.The addition of Nb to the AI-0.3Pd film resulted in monomodal grain size distributions over the entire temperature range. The role of crystallographic texture on grain growth in thin films is discussed.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献