The Effect of Annealing on the Cu Distribution and AI2Cu Precipitation in Ai(Cu) Thin Films

Author:

Colgan E.G.,Rodbell K.P.,Vigliotti D.R.

Abstract

AbstractThe Cu distribution in AI(Cu) thin films has been examined in blanket and patterned samples as a function of annealing. The Cu concentration in the Al grains, measured at room temperature, closely follows the solubility at the anneal temperature when a high cooling rate is used (-100 or -200°C/min) from the annealing temperature. With fine lines, the room temperature Cu concentration follows the solubility at the anneal temperature only at low anneal temperatures, ≤350°C. With higher temperatureannealing, >400°C, the room temperature Cu concentration in the Al grains was substantially less than the solubility at the anneal temperature. These differences are attributed to the smaller grain size in fine lines, which reduces the distance to grain boundaries. With blanket films, the Θ-phase (Al2Cu) precipitate morphology depends on the Al grain size and annealing temperature. With small Al grains (100-300 nm), the Θ particles are small (100-200 nm) and round whereas with large Al grains (0.5-2μm), the precipitates are long and irregularly shaped. The morphology of the Θ precipitates is constrained by the Al grain size. With fine lines, having a bamboo structure, the Θ precipitates are “wedge” shaped along grain boundaries or span the width of the line. The electromigration lifetime was found to depend strongly on the heat treatment used, an increase of 3X in lifetime was obtained for samples rapidly cooled from a temperature above the solvus curve as compared with samples subjected to additional aging at low temperatures. This is believed to be dueto the different concentrations of Cu in solution and to the size and distribution of Θparticles in the patterned lines.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3