Direct Evidence of Diffusion of Self-Interstitials in Silicon

Author:

Das Gobinda

Abstract

ABSTRACTHigh temperature (1200°C) HCI oxidation treatment has been employed to float-zone (FZ) silicon wafers (625μm thick) containing swirl defects in order to study their diffusion characteristics. In treated wafers, swirl defects can be eliminated from both surfaces up to a depth of ∼30μm. In the bulk of the wafers, however, large swirl defects (A-swirls) rearrange themselves into many small defects. The untreated portions of wafers contain large swirl defects (A-swirls) that extend up to both surfaces. Since swirl defects are primarily clusters of silicon self-interstitials, their rearrangement in the bulk and elimination from the surfaces demonstrate that migration of interstitials takes place on a large scale and is not confined to SiO2/ silicon interface only. The above observations appear to provide direct evidence for the dominant role of self interstitials for diffusion mechanism in silicon at high temperature and can be rationalized in terms of an interstitialcy mechanism. Alternatively, however, dominance of interstitials can be related to a higher migration energy of vacancies proposed in a model where both species coexist at high temperature. The preference of one model over another must await theoretical calculations of diffusion energetics derived from both models.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Extended Nature of Pointlike Defects in Silicon;Point and Extended Defects in Semiconductors;1989

2. Defect-Impurity Interactions;Physical Chemistry of, in and on Silicon;1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3