Author:
Jacques J. M.,Robertson L. S.,Jones K. S.,Bennett Joe
Abstract
AbstractFluorine and boron co-implantation within amorphous silicon has been studied in order to meet the process challenges regarding p+ ultra-shallow junction formation. Previous experiments have shown that fluorine can reduce boron TED (Transient Enhanced Diffusion), enhance boron solubility and reduce sheet resistance. In this study, boron diffusion characteristics prior to solid phase epitaxial regrowth (SPER) of the amorphous layer in the presence of fluorine are addressed. Samples were pre-amorphized with Si+ at a dose of 1x1015 ions/cm2 and energy of 70 keV, leading to a deep continuous amorphous surface of approximately 1500 Å. After pre-amorphization, B+ was implanted at a dose of 1x1015 ions/cm2 and energy of 500 eV, while F+ was implanted at a dose of 2x1015 ions/cm2 and energies ranging from 3 keV to 9 keV. Subsequent furnace anneals for the F+ implant energy of 6 keV were conducted at 550°C, for times ranging from 5 minutes to 260 minutes. During annealing, the boron in samples co-implanted with fluorine exhibited significant enhanced diffusion within amorphous silicon. After recrystallization, the boron diffusivity was dramatically reduced. Boron in samples with no fluorine did not diffuse during SPER. Prior to annealing, SIMS profiles demonstrated that boron concentration tails broadened with increasing fluorine implant energy. Enhanced dopant motion in as-implanted samples is presumably attributed to implant knock-on or recoil effects.
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献