Electrical resistance of Sn–Ag–Cu ball grid array packages with Sn–Zn–Bi addition jointed at 240 °C

Author:

Shih Po-Cheng,Lin Kwang-Lung

Abstract

Sn–8Zn–3Bi solder paste and Sn–3.2Ag–0.5Cu solder balls were reflowed simultaneously at 240 °C on Cu/Ni/Au metallized ball grid array substrates. The joints without Sn–Zn–Bi addition (only Sn–Ag–Cu) were studied as a control system. Electrical resistance was measured after multiple reflows and aging. The electrical resistance of the joint (R1) consisted of three parts: the solder bulk (Rsolder bulk, upper solder highly beyond the mask), interfacial solder/intermetallic compound (Rsolder/IMC), and the substrate (Rsubstrate). R1 increased with reflows and aging time. Rsolder/IMC, rather than Rsolder bulk and Rsubstrate, seemed to increase with reflows and aging time. The increase of R1 was ascribed to the Rsolder/IMC rises. Rsubstrate was the major contribution to R1. However Rsolder/IMC dominated the increase of R1 with reflows and aging. R1 of Sn–Zn–Bi/Sn–Ag–Cu samples were higher than that of Sn–Ag–Cu samples in various tests.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3