Light absorptive underlayer enhanced excimer-laser crystallization of Si thin-film

Author:

Yeh Wenchang,Ke Dunyuan,Zhuang Chunjun,Huang Hsiangen,Yang Yubang

Abstract

A sample structure and method for superlateral-growth (SLG) enhancement in excimer-laser crystallization has been implemented and realized. The proposed sample structure is a Si film/buffer film/light-absorptive (LA) film/glass-stacked structure, with the irradiation of laser light from underneath a substrate. The influence of the absorption coefficient α of the LA film has been found to be critical in this structure. By increasing α from 0 to 12,000 cm−1, diameter of SLG grain has increased from 0.8 to 10 μm, with the solidification term increased from 75 to 1050 ns, respectively. The radius of SLG grain was shown to be proportional to the solidification term with a slope of 5 m/s. This result suggests the average SLG growth rate is constant at 5 m/s, irrespective of the solidification term of Si film. The applicability of present method to both sequential lateral solidification method and micromelt seeding method was demonstrated. Overcoming of Si agglomeration has been shown to be important for applying the present method to the sequential lateral solidification (SLS) method.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3