Author:
Kuo Shih-Ming,Lin Kwang-Lung
Abstract
This study investigated the electromigration behavior between Cu and Sn–9Zn solder under a current density of 1.0 × 103 A/cm2 for up to 230 h. The experimental results indicated that Cu5Zn8 was formed at the interface between Cu and the cathode side of the Sn–9Zn solder as well as in the bulk near the anode. Consumption of Cu was also observed for the Cu plating on the cathode side and anodic side, but with less compound formation and Cu consumption at the anode. The intermetallic compound layer on the cathode side was always thicker than that on the anode side after the same current-stressing time. The effect of chemical potential overwhelms electromigration in inducing Zn diffusion when a counterflow of electrons and chemical potential gradient exists. Voids formed at the Cu5Zn8–solder interface inside the solder regardless of the direction of current flow.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献